Digital Electronics

See Boolean Algebra for a description of the category as well as references.

NAME	GRAPHICAL SYMBOL	ALGEBRAIC EQN	TRUTH TABLE		
BUFFER		X = A	$ \begin{array}{ccc} \underline{A} & \underline{X} \\ 0 & 0 \\ 1 & 1 \end{array} $		
NOT		$X = \overline{A}$	$ \begin{array}{c c} \underline{A} & \underline{X} \\ 0 & 1 \\ 1 & 0 \end{array} $		
AND	A X	$X = AB \text{ or } A^*B$	A B X 0 0 0 0 1 0 1 0 0 1 1 1		
NAND		$X = \overline{AB} \text{ or } \overline{A^*B}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
OR		X = A + B	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
NOR	а вОх	$X = \overline{A + B}$	A B X 0 0 1 0 1 0 1 0 0 1 1 0		
EXCLUSIVE-OR (XOR)		$X = A \oplus B$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
EQUIVALENCE (XNOR)		$X = \overline{A \oplus B}$	A B X 0 0 1 0 1 0 1 0 0 1 1 1		

Sample Problems

Find all ordered 4-tuples (A, B, C, D), which make the following circuit FALSE:

The circuit translates to the following Boolean expression:

$$(\overline{C+D}+\overline{B}) \oplus (\overline{A}B) \oplus (\overline{C+D})$$

The following table has the following headings: H1 is $\overline{(C+D)}$, H2 is H1+ \overline{B} , H3 is $\overline{A}B$, H4 is H2 \oplus H3 and H5 is H4 \oplus H1, the final expression.

Α	В	С	D	H1	H2	Н3	H4	Н5
0	0	0	0	1	1	0	1	0
0	0	0	1	0	1	0	1	1
0	0	1	0	0	1	0	1	1
0	0	1	1	0	1	0	1	1
0	1	0	0	1	1	1	0	1
0	1	0	1	0	0	1	1	1
0	1	1	0	0	0	1	1	1
0	1	1	1	0	0	1	1	1
1	0	0	0	1	1	0	1	0
1	0	0	1	0	1	0	1	1
1	0	1	0	0	1	0	1	1
1	0	1	1	0	1	0	1	1
1	1	0	0	1	1	0	1	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0

Thus, the 4-tuples (0,0,0,0), (1,0,0,0), (1,1,0,0), (1,1,0,1), (1,1,1,0), and (1,1,1,1) all make the circuit **FALSE**.

The circuit translates to the following Boolean

expression: $\overline{AB} + C$. To find when this is **FALSE** we can equivalently find when the

 \overline{AB} + C is **TRUE**. We can simplify this by applying DeMorgan's Law and cancelling the

double *not* over AB to yield $AB\overline{C}$. This is **TRUE** when all three terms are **TRUE**, which happens for (1, 1, 0).