Digital Electronics

See Boolean Algebra for a description of the category as well as references.

NAME	$\underset{\text { SYMBOL }}{\text { GRAPHICAL }}$	ALGEBRAIC EQN	TRUTH TABLE
BUFFER		$X=A$	$\begin{array}{ll} \mathrm{A} & \mathrm{X} \\ \hline 0 & 0 \\ 1 & 1 \end{array}$
NOT		$X=\bar{A}$	$\begin{array}{ll} \mathrm{A} & \mathrm{X} \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
AND		$X=A B$ or $A^{*} B$	A B X 0 0 0 0 1 0 1 0 0 1 1 1
NAND		$X=\overline{A B}$ or $\overline{A^{*} B}$	$\begin{array}{lll} \hline \mathrm{A} & \mathrm{~B} & \mathrm{X} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array}$
OR		$X=A+B$	A B X 0 0 0 0 1 1 1 0 1 1 1 1
NOR		$X=\overline{A+B}$	A B X 0 0 1 0 1 0 1 0 0 1 1 0
$\begin{aligned} & \text { EXCLUSIVE-OR } \\ & \text { (XOR) } \end{aligned}$		$X=A \oplus B$	A B X 0 0 0 0 1 1 1 0 1 1 1 0
EQUIVALENCE (XNOR)		$X=\overline{A \oplus B}$	$\begin{array}{lll} \hline \mathrm{A} & \mathrm{~B} & \mathrm{X} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$

Sample Problems

Find all ordered 4-tuples (A, B, C, D), which make the following circuit FALSE:

The circuit translates to the following Boolean expression:

$$
(\overline{C+D}+\bar{B}) \oplus(\bar{A} B) \oplus(\overline{C+D)}
$$

The following table has the following headings: H 1 is $\overline{(C+D)}, \mathrm{H} 2$ is $\mathrm{H} 1+\bar{B}, \mathrm{H} 3$ is $\bar{A} B, \mathrm{H} 4$ is $\mathrm{H} 2 \oplus \mathrm{H} 3$ and H 5 is $\mathrm{H} 4 \oplus \mathrm{H} 1$, the final expression.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	$\mathbf{H 1}$	$\mathbf{H 2}$	$\mathbf{H 3}$	$\mathbf{H 4}$	H5
0	0	0	0	1	1	0	1	0
0	0	0	1	0	1	0	1	1
0	0	1	0	0	1	0	1	1
0	0	1	1	0	1	0	1	1
0	1	0	0	1	1	1	0	1
0	1	0	1	0	0	1	1	1
0	1	1	0	0	0	1	1	1
0	1	1	1	0	0	1	1	1
1	0	0	0	1	1	0	1	0
1	0	0	1	0	1	0	1	1
1	0	1	0	0	1	0	1	1
1	0	1	1	0	1	0	1	1
1	1	0	0	1	1	0	1	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0

Thus, the 4-tuples $(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,0,1),(1,1,1,0)$, and $(1,1,1,1)$ all make the circuit FALSE.

Find all ordered triplets (A, B, C) which make the following circuit FALSE:

The circuit translates to the following Boolean expression: $\overline{A B}+C$. To find when this is
FALSE we can equivalently find when the $\overline{\overline{A B}+C}$ is TRUE. We can simplify this by applying DeMorgan's Law and cancelling the double not over $A B$ to yield $A B \bar{C}$. This is TRUE when all three terms are TRUE, which happens for $(1,1,0)$.

