

Data Structures

At the heart of virtually every computer program are its algorithms and its data structures. It is hard to separate
these two items, for data structures are meaningless without algorithms to create and manipulate them, and
algorithms are usually trivial unless there are data structures on which to operate.

This category concentrates on four of the most basic structures: stacks, queues, binary search trees, and priority
queries. Questions will cover these data structures and implicit algorithms, not on implementation language
details. A stack is usually used to save information that will need to be processed later. Items are processed in
a “last-in, first-out” (LIFO) order. A queue is usually used to process items in the order in which requests are
generated; a new item is not processed until all items currently on the queue are processed. This is also known
as “first-in, first-out” (FIFO) order. A binary search tree is used when one is storing a set of items and needs to
be able to efficiently process the operations of insertion, deletion and query (i.e. find out if a particular item is
part of the set and if not, which item in the set is close to the item in question). A priority queue is used like a
binary search tree, except one cannot delete an arbitrary item, nor can one make an arbitrary query. One can
only delete the smallest element of the set, and can only find out what is the smallest element of the set.

A stack supports two operations: PUSH and POP. A command of the form “PUSH(A)” puts the key A at the
top of the stack; the command “POP (X)” removes the top item from the stack and stores its value into variable
X. If the stack was empty (because nothing had ever been pushed on it, or if all elements has been popped off
of it), then X is given the special value of NIL. An analogy to this is a stack of books on a desk: a new book is
placed on the top of the stack (pushed) and a book is removed from the top also (popped). Some textbooks call
this data structure a “push-down stack” or a “LIFO stack”.

Queues operate just like stacks, except items are removed from the bottom instead of the top. A good physical
analogy of this is the way a train conductor or newspaper boy uses a coin machine to give change: new coins
are added to the tops of the piles, and change is given from the bottom of each. Some textbooks refer to this
data structure as a “FIFO stack”.

 Consider the following sequence of 14 operations:
 PUSH(A), PUSH(M), PUSH(E), POP(X), PUSH(R),
 POP(X), PUSH(I), POP(X), POP(X), POP(X),
 POP(X), PUSH(C), PUSH(A), PUSH(N)

If these operations are applied to a stack, then the values of the pops are: E, R, I, M, A and NIL. After all of the
operations, there are three items still on the stack: the N is at the top (it will be the next to be popped, if nothing
else is pushed before the pop command), and C is at the bottom. If, instead of using a stack we used a queue,
then the values popped would be: A, M, E, R, I and NIL. There would be three items still on the queue: N at the
top and C on the bottom. Since items are removed from the bottom of a queue, C would be the next item to be
popped regardless of any additional pushes.

A binary search tree is composed of nodes having three parts: information (or a key), a pointer to a left child,
and a pointer to a right child. It has the property that the key at every node is always greater than or equal to the
key of its left child, and less than the key of its right child. The following tree is built from the keys A, M, E, R,
I, C, A, N in that order:

A

A

I N

M

R

C

E

The root of the resulting tree is the node containing the key A; note that duplicate keys are inserted into the tree
as if they were less than their equal key. The tree has a depth (sometimes called height) of 3 because the
deepest node is 3 nodes below the root. Nodes with no children are called leaf nodes; there are four of them in
the tree: A, C, I and N. An external node is the name given to a place where a new node could be attached to
the tree. In the final tree above, there are 9 external nodes; these are not drawn. The tree has an internal path
length of 15: the sum of the depths of all nodes. It has an external path length of 31: the sum of the depths of
all external nodes. To insert the N (the last key inserted), 3 comparisons were needed: against the root A, the M
and the R.

 To perform an “inorder” traversal of the tree, recursively traverse the tree by first visiting the left child, then the
root, then the right child. In the tree above, the nodes are visited in the following order: A, A, C, E, I, M, N and
R. A “preorder” travel (root, left, right) visits in the following order: A, A, M, E, C, I, R and N. A “postorder”
traversal (left, right, root) is: A, C, I, E, N, R, M, A. Inorder traversals are typically used to list the contents of
the tree in order.

Binary search trees can support the operations: insert, delete and search. Moreover, it handles the operations
efficiently: in a tree with, say, 1 million items, one can search for a particular value in about log21000000≈ 20
steps. Items can be inserted or deleted in about as many steps, too. However, binary search trees can become
unbalanced, if the keys being inserted are not pretty random. For example, consider the binary search tree
resulting from inserting the keys A, E, I, O, U, Y. Sophisticated techniques are available to maintain balanced
trees. Binary search trees are “dynamic” data structures: they can support an unlimited number of operations,
and in any order.

 To search for a node in a binary tree, the following algorithm (in pseudo-code) is used:
 p = root
 found = FALSE
 loop while (p ≠ NIL) and (not found)
 if (x<p’s key) then p = p’s left child
 else if (x>p’s key) then p = p’s right child
 else found = TRUE
 repeat

Deleting from a binary search tree is a bit more complicated. The algorithm we’ll use is as follows:

 p = node to delete
 f = father of p
 if (p has no children) then
 delete p
 else if (p has one child) then
 make p’s child become f’s child
 delete p
 else (p has two children)
 l = p’s left child (it might also have children)
 r = p’s right child (it might also have children)
 make l become f’s child instead of p
 stick r onto the l tree
 delete p

 end

The following three diagrams illustrate the algorithm using the tree above. At the left, we delete I (no children);
in the middle, we delete the R (one child); and at the right, we delete the M (two children).

A priority queue is quite similar to a binary search tree, but one can only delete the smallest item and “search”
for the smallest. These operations can be done in a guaranteed time proportional to the log of the number of
items. One popular way to implement a priority queue is using a “heap” data structure. A heap uses a binary
tree (that is , a tree with two children) and maintains the following two properties: every node is larger than its
two children (nothing is said about the relative magnitude of the two children), and the resulting tree contains
no “holes”. That is, all levels of the tree are completely filled, except the bottom level, which is filled in from
the left to the right.

You may want to stop for a moment to think about how you might make an efficient implementation of a
priority queue.

The algorithm for insertion is not too difficult: put the new node at the bottom of the tree and then go up the
tree, making exchanges with its parent, until the tree is valid. Consider inserting C into the following heap that
has been built by inserting A, M, E, R, I, C, A, N:

A

C A

CEI M

R N

The smallest value is always the root. To delete it (and one can only delete the smallest value), one replaces it
with the bottom-most and right-most element, and then walks down the tree making exchanges with the child in
order to insure that the tree is valid. The following pseudo-code formalizes this notion:

 b = bottom-most and right-most element
 p = root of tree
 p’s key = b’s key
 delete b
 loop while (p is larger than either child)
 exchange p with smaller child
 p = smaller child
 repeat

BUILDING A HEAP FROM A, M, E, R, I, C, A, N:

A

I A

CEN M

R

A

M

A

M E

A

A

A

N

M

R

C

E

A

A

I

M

N

C

E

A

A E

IC

R

N

A

M E

R
A

I A

CEN M

R

References
Amberg, Wayne. Data Structures from Arrays to Priority Queues, Wadsworth (1985).

Bentley, Jon. “Thanks, Heaps” in Programming Pearls, Communications of the ACM, Vol . 28, No. 3, March
1985.

Sedgewick, Robert. Algorithms, Addison-Wesley (1983), Chapters 11 and 14.

Wirth, Niklaus. “Data Structures and Algorithms” in Scientific American, September 1984, pp. 60-79.

A

I E

R M

A

I A

R M E C

A

I C

R M E

Sample Problems

The statements push(p, q) and pop(p, q) handle two
parallel stacks. The push puts p on the top of one
stack and the q on the top of the second stack. The
pop command does a pop of the first stack and puts the
value into p, and a pop of the second stack and puts
the value into q. For example,
 push(4, 6)
 push (2, 5)
 pop(a, b)
 pop(c, d)
would result in a=2, b=5, c=4, d=6.
Consider the following operations on an initially
empty stack:
 push(40, 10)
 push(35, 3)
 push(12, 20)
 pop(a, b)
 pop(a, b)
 push(10, 23)

What would be the next item removed from the “first”
stack?

The first pop puts a=12 and b=20; the second pop set
a=35 and b=3. The push(10, 23) would cause the next
pop to set a=10 and b=23. The wording of the
problem indicates that a is the “first” stack and b the
“second”.

Which of the following binary trees are valid binary
search trees? (Empty nodes are not drawn.)

A B

C D E

Be careful! A binary tree is a tree where each node
has at most 2 children. A binary search tree is a binary
tree with the additional property that the letter of each
node is greater than the value of its left child, and less
than the value of its right child. The valid trees are:
(a), (b), and (d).

A

C

S

L

J

S

TR

B

B

R

O

N

W

A

W

F

M

T

S

Z

M

A

Q

If one traversed the following tree in preorder (visit
the root, and then each of the subtrees from left to
right), in what order would nodes be visited? Be sure
your answer is neat and clear!

Answer: A B D E F H I C G
A common mistake is not to recursively visit all nodes
in each subtree.

A

C

G

B

ED F

IH

