
 
Data Structures 

   
At the heart of virtually every computer program are its algorithms and its data structures.  It is hard to separate 
these two items, for data structures are meaningless without algorithms to create and manipulate them, and 
algorithms are usually trivial unless there are data structures on which to operate. 
 
This category concentrates on four of the most basic structures:  stacks, queues, binary search trees, and priority 
queries.  Questions will cover these data structures and implicit algorithms, not on implementation language 
details.  A stack is usually used to save information that will need to be processed later.  Items are processed in 
a “last-in, first-out” (LIFO) order.  A queue is usually used to process items in the order in which requests are 
generated; a new item is not processed until all items currently on the queue are processed.  This is also known 
as “first-in, first-out” (FIFO) order.  A binary search tree is used when one is storing a set of items and needs to 
be able to efficiently process the operations of insertion, deletion and query (i.e. find out if a particular item is 
part of the set and if not, which item in the set is close to the item in question).  A priority queue is used like a 
binary search tree, except one cannot delete an arbitrary item, nor can one make an arbitrary query.  One can 
only delete the smallest element of the set, and can only find out what is the smallest element of the set.   
 
A stack supports two operations:  PUSH and POP.  A command of the form “PUSH(A)” puts the key A at the 
top of the stack; the command “POP (X)” removes the top item from the stack and stores its value into variable 
X.  If the stack was empty (because nothing had ever been pushed on it, or if all elements has been popped off 
of it), then X is given the special value of NIL.  An analogy to this is a stack of books on a desk: a new book is 
placed on the top of the stack (pushed) and a book is removed from the top also (popped).  Some textbooks call 
this data structure a “push-down stack” or  a “LIFO stack”. 
 
Queues operate just like stacks, except items are removed from the bottom instead of the top.  A good physical 
analogy of this is the way a train conductor or newspaper boy uses a coin machine to give change: new coins 
are added to the tops of the piles, and change is given from the bottom of each.  Some textbooks refer to this 
data structure as a “FIFO stack”. 
 
 Consider the following sequence of 14 operations: 
  PUSH(A), PUSH(M), PUSH(E), POP(X), PUSH(R), 
  POP(X), PUSH(I), POP(X), POP(X), POP(X), 
  POP(X), PUSH(C), PUSH(A), PUSH(N) 
 
If these operations are applied to a stack, then the values of the pops are: E, R, I, M, A and NIL.  After all of the 
operations, there are three items still on the stack: the N is at the top (it will be the next to be popped, if nothing 
else is pushed before the pop command), and C is at the bottom.  If, instead of using a stack we used a queue, 
then the values popped would be: A, M, E, R, I and NIL.  There would be three items still on the queue: N at the 
top and C on the bottom.  Since items are removed from the bottom of a queue, C would be the next item to be 
popped regardless of any additional pushes.   
 
A binary search tree is composed of nodes having three parts: information (or a key), a pointer to a left child, 
and a pointer to a right child.  It has the property that the key at every node is always greater than or equal to the 
key of its left child, and less than the key of its right child.  The following tree is built from the keys A, M, E, R, 
I, C, A, N in that order:  
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The root of the resulting tree is the node containing the key A; note that duplicate keys are inserted into the tree 
as if they were less than their equal key.  The tree has a depth (sometimes called height) of 3 because the 
deepest node is 3 nodes below the root.  Nodes with no children are called leaf nodes; there are four of them in 
the tree:  A, C, I and N.  An external node is the name given to a place where a new node could be attached to 
the tree.  In the final tree above, there are 9 external nodes; these are not drawn.  The tree has an internal path 
length  of 15: the sum of the depths of all nodes.  It has an external path length of 31: the sum of the depths of 
all external nodes.  To insert the N (the last key inserted), 3 comparisons were needed: against the root A, the M 
and the R. 
 
 To perform an “inorder” traversal of the tree, recursively traverse the tree by first visiting the left child, then the 
root, then the right child.  In the tree above, the nodes are visited in the following order: A, A, C, E, I, M, N and 
R.  A “preorder” travel (root, left, right) visits in the following order: A, A, M, E, C, I, R and N.  A “postorder” 
traversal (left, right, root) is: A, C, I, E, N, R, M, A.  Inorder traversals are typically used to list the contents of 
the tree in order.  
 
Binary search trees can support the operations: insert, delete and search.  Moreover, it handles the operations 
efficiently: in a tree with, say, 1 million items, one can search for a particular value in about log21000000≈ 20 
steps.  Items can be inserted or deleted in about as many steps, too.  However, binary search trees can become 
unbalanced, if the keys being inserted are not pretty random.  For example, consider the binary search tree 
resulting from inserting the keys A, E, I, O, U, Y.  Sophisticated techniques are available to maintain balanced 
trees.  Binary search trees are “dynamic” data structures: they can support an unlimited number of operations, 
and in any order.  
 
 To search for a node in a binary tree, the following algorithm (in pseudo-code) is used: 
    p = root 
    found = FALSE 
    loop while (p ≠  NIL) and (not found) 
        if (x<p’s key) then p = p’s left child 
        else if (x>p’s key) then p = p’s right child 
        else found = TRUE 
    repeat 
 
 
 
 
 
 
 
 
 
 
 
 
Deleting from a binary search tree is a bit more complicated.  The algorithm we’ll use is as follows: 
 
    p = node to delete 
    f = father of p 
    if (p has no children) then 
        delete p 
    else if (p has one child) then 
        make p’s child become f’s child 
        delete p 
    else (p has two children) 
        l = p’s left child (it might also have children) 
        r = p’s right child (it might also have children) 
        make l become f’s child instead of p 
        stick r onto the l tree 
        delete p 



    end 
 
The following three diagrams illustrate the algorithm using the tree above.  At the left, we delete I (no children); 
in the middle, we delete the R (one child); and at the right, we delete the M (two children). 
 
       
 
 
 
 
  
 
 
 
 
A priority queue is quite similar to a binary search tree, but one can only delete the smallest item and “search” 
for the smallest.  These operations can be done in a guaranteed time proportional to the log of the number of 
items.  One popular way to implement a priority queue is using a “heap” data structure.  A heap uses a binary 
tree (that is , a tree with two children) and maintains the following two properties: every node is larger than its 
two children (nothing is said about the relative magnitude of the two children), and the resulting tree contains 
no “holes”.  That is, all levels of the tree are completely filled, except the bottom level, which is filled in from 
the left to the right. 
 
You may want to stop for a moment to think about how you might make an efficient implementation of a 
priority queue.   
 
The algorithm for insertion is not too difficult: put the new node at the bottom of the tree and then go up the 
tree, making exchanges with its parent, until the tree is valid.  Consider inserting C into the following heap that 
has been built by inserting A, M, E, R, I, C, A, N: 
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The smallest value is always the root.  To delete it (and one can only delete the smallest value), one replaces it 
with the bottom-most and right-most element, and then walks down the tree making exchanges with the child in 
order to insure that the tree is valid.  The following pseudo-code formalizes this notion: 
 
  b = bottom-most and right-most element 
  p = root of tree 
  p’s key = b’s key 
  delete b 
  loop while (p is larger than either child) 
       exchange p with smaller child 
     p = smaller child 
  repeat 
 

BUILDING A HEAP FROM A, M, E, R, I, C, A, N: 
 
 
 
 
 

        
 
 

A

I A

CEN M

R  

A

M

 

A

M E

 

A

 

A

A

N

M

R

C

E

 

A

A

I

M

N

C

E

 

A

A E

IC

R

N  

A

M E

R  
A

I A

CEN M

R  



 
 

          
 
 
 
 
 
References 
Amberg, Wayne.  Data Structures from Arrays to Priority Queues, Wadsworth (1985). 
 
Bentley, Jon.  “Thanks, Heaps” in Programming Pearls, Communications of the ACM, Vol . 28, No. 3, March 
1985. 
 
Sedgewick, Robert.  Algorithms, Addison-Wesley (1983), Chapters 11 and 14. 
 
Wirth, Niklaus.  “Data Structures and Algorithms” in Scientific American, September 1984, pp. 60-79. 

A

I E

R M  

A

I A

R M E C

 

A

I C

R M E
 



 
Sample Problems 
 
The statements push(p, q) and pop(p, q) handle two 
parallel stacks.  The push puts p on the top of one 
stack and the q on the top of the second stack.  The 
pop command does a pop of the first stack and puts the 
value into p, and a pop of the second stack and puts 
the value into q.  For example, 
   push(4, 6) 
   push (2, 5) 
   pop(a, b) 
   pop(c, d) 
would result in a=2, b=5, c=4, d=6. 
Consider the following operations on an initially 
empty stack: 
   push(40, 10) 
   push(35, 3) 
   push(12, 20) 
   pop(a, b) 
   pop(a, b) 
   push(10, 23) 
 
What would be the next item removed from the “first” 
stack? 
 

 
The first pop puts a=12 and b=20; the second pop set 
a=35 and b=3.  The push(10, 23) would cause the next 
pop to set a=10 and b=23.  The wording of the 
problem indicates that a is the “first” stack and b the 
“second”. 

 
Which of the following binary trees are valid binary 
search trees?  (Empty nodes are not drawn.) 
 
A                               B 
 
 
 
 
 
 
 
C                          D                        E 
 
 
 
 
 
 
 
 
 
 

 
Be careful!  A binary tree is a tree where each node 
has at most 2 children.  A binary search tree is a binary 
tree with the additional property that the letter of each 
node is greater than the value of its left child, and less 
than the value of its right child.  The valid trees are: 
(a), (b), and (d). 
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If one traversed the following tree in preorder (visit 
the root, and then each of the subtrees from left to 
right), in what order would nodes be visited?  Be sure 
your answer is neat and clear! 
 
 
 
 
 
 
 
 
 
 
 
 

 
Answer: A B D E F H I C G 
A common mistake is not to recursively visit all nodes 
in each subtree. 
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